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Abstract—The objective of this work is to study the effect of a frictional interface on the extent of
interfacial debonding and internal stress distribution within a unidirectional ceramic matrix com-
posite under thermo-mechanical loading. The configuration considered is a concentric cylinder with
an annular crack in the axial plane of the matrix while the fiber-matrix interface is made to obey
the Coulomb friction law. The present approach of employing a variational model is shown to
satisfy all boundary and inequality conditions in the slip and stick regions and at the slip-stick
transition point. The results are also shown to be in very good agreement with a numerical elasticity
solution for points away from the matrix crack tip while some of the peculiarities near the crack tip
associated with the numerical solution are identified. Published by Elsevier Science Ltd.

INTRODUCTION

In this work we are interested in a class of composites commonly referred to as brittle
matrix composites (BMC) that are characterized by continuous fibers with an elastic matrix
that possesses stiffness which may be comparable to that of the fiber. A prominent feature
of BMC geometry is the presence of imperfect bonding between the various constituent
materials, such as the fiber-matrix interface. In this class of composites, cracks will first
develop in the matrix under tensile loading in the axial direction due to its lower failure
strain. When a matrix crack approaches the fiber-matrix interface, the interface may open
or slip, thereby blunting the crack by slowing and/or arresting its propagation. Although
the blunting of the crack increases the fracture toughness of the composite (Budiansky e?
al., 1986), the damage in the interface reduces the axial compressive and transverse strength
of the composite and is also one of the major causes of stiffness reduction in the fiber
direction (Steif, 1984).

Theories for the strength and toughness of fiber-reinforced composites have, for the
most part, been based on rather simple assumptions regarding the way in which load is
transferred between the fiber and the matrix. These theories (Kelly, 1970 ; Aveston et al.,
1971) typically assume that a constant shear stress acts at the fiber-matrix interface. This
shear stress is often interpreted as the flow stress of the matrix or as the friction stress at
the interface. According to Dollar and Steif (1988), using a constant shear stress model for
a fiber-matrix interface which is actually governed by Coulomb friction may lead to
substantially inaccurate results. Dollar and Steif (1988) have shown that the constant shear
stress approximation overestimates the amount and extent of slip when the fiber is subjected
to compression, while underestimating these quantities when the fiber is subjected to tension.
On the other hand, one should also realize an intrinsic difficulty of models that represent
fiber and matrix as layers. Such models provide inaccurate representation of geometric
details such as the ratio of fiber spacing to fiber diameter which can differ drastically from
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that in a composite having the same volume fraction of fibers arranged in a hexagonal
pattern. This distortion is especially magnified at low values of fiber volume fraction. There
is substantially less distortion of these details in the concentric cylinder model utilized in
this work, although the idealization of an initial annular crack in this case carries its own
question of credibility.

Axisymmetric three-dimensional failure mechanics models, which satisfy all equations
of elasticity as well as assume an imperfect interface, include the works of Wijeyewickrema
and Keer (1993), Kaw and Pagano (1993), Meda ef al. (1993), Selvadurai (1994) and Kaw
et al. (1995). The interface in the work of Wijeyewickrema and Keer (1993) included a slip
zone and was assumed to have a constant shear stress equal to the shear strength of the
interface. Kaw and Pagano (1993) approximated the imperfect interface by distributed
shear springs of constant stiffness. The fiber micro-indentation push-in test was studied by
Meda er al. (1993) for the case of a Coulomb friction law by considering a single fiber
embedded in a half-space. Selvadurai (1994) used the boundary element technique to
examine the self-similar extension of a matrix crack in the presence of Coulomb friction at
the interface. The assumptions of dilute fiber volume fraction and a through annular crack
in the work of Schwictert and Steif (1991) were relaxed by Kaw ez al. (1995). Further,
Schwietert and Steif (1991) simulated the residual compression at the interface ( for systems
in which a,, > a) by applying a remote stress acting to press the regions together. This
idealization, however, fails to recognize the spatial distribution of the residual stress field,
especially where the singular nature of the radial stress at the free surface actually leads to
a sign reversal in o, (Pagano, 1991). Kaw er al. (1995) directly accounted for the processing
induced residual stresses in their work, where, using a related boundary element method,
the system of equations was reduced to coupled integral equations which were then solved
numerically.

The objective of this work is to accurately examine the stress and displacement fields
in the vicinity of matrix cracks approaching a frictionally constrained interface. In this
study a modified version of the variational model (Pagano, 1991) of an axisymmetric
concentric cylinder has been employed. After deriving the sliding interface boundary con-
ditions, we will specifically examine the effect of the friction coefficient, temperature change
and remote uniform axial displacement on the extent of interfacial debonding and internal
stress distribution within a unidirectional ceramic matrix composite under thermo-mech-
anical loading. We will compare our results with the solution of Kaw er al. (1995) for an
identical geometry and loading. We should note that our main purpose here is to qualify
our model for use to solve problems which involve a frictional interface. As we shall see
later (see concluding remarks), the example problem posed is unlikely to be realized in
practice, even under very idealized conditions. This work then is viewed as a prerequisite
to attacking the more realistic problems. It goes without saying that more approximate
treatments, such as shear-lag models, also suffer this deficiency.

PROBLEM DEFINITION

The medium considered here consists of a solid cylindrical body (fiber) which is
surrounded by a concentric hollow cylinder (matrix) as shown in Fig. 1. This concentric
cylinder configuration can be viewed as an approximation for the representative volume
element of a unidirectional composite reinforced by a hexagonal array of fibers. Cylindrical
coordinates r, z are introduced as shown in Fig. 1 and each material is assumed to be
elastically transversely-isotropic with respect to the z axis.

Let the fiber radius and the matrix outer radius be denoted by a and d, respectively.
The composite cylinder is subjected to a monotonically increasing axial displacement w, on
the ends plus a constant temperature change AT. Under tensile loading in the axial direction,
cracks will first develop in the matrix region due to its lower failure strain than that of the
fiber. An annular crack of length ‘c—5" (a < b < ¢ < d) is therefore introduced in the
matrix in the z = 0 plane, at a distance of ‘b —a’ from the interface. When the matrix crack
reaches the fiber-matrix interface, the interface may open or slip. This opening/slipping of
the interface blunts the crack, and thereby slows and/or arrests its propagation. For analysis
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Fig. 1. Schematic of a representative volume element with a frictional interface and annular matrix
crack.

purposes, the interface between the fiber and matrix may have open, slip and continuous
zones, and their lengths are denoted by L, L, and L,, respectively, as shown in Fig. 1.

BOUNDARY CONDITIONS

Interface conditions
The traction continuity conditions at the interface between the fiber and matrix
0 < |zt <(L,+L,+L,)) at r = a are given by

o i(az) = op(az), ¢il(az)=o07(az) (M

where the superscripts /and m refer the stated quantity to the fiber and matrix, respectively.
In addition, in each one of the regions, namely, the open, slip and continuous regions, the
following conditions need to be satisfied.

Open zone (0 < |z| < L,): the crack surfaces are traction free as given by
o(az)=0, o/(az)=0 (2)

and are constrained by the crack opening condition
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w"(a,z)—u'(a,z) >0 3)
where the r, z components of displacement are designated as u, w, respectively.
Slip zone (L, < |z} <(L,+ L,)): for this work, the interface between the fiber and
matrix is made to follow the Coulomb friction law and the friction coefficient y is assumed

to be constant in the slip zone. The shear stress in the slip region is related to the radial
stress through

ol(a;z) = +uol(az) 4)
where the sign to be used is determined by the consideration that the shear stress opposes
the relative slip (Aw) at the interface. In addition, the radial stress in the slip region is
compressive, i.e.,

o/ (az)<0 ()

while normal contact is maintained

u/(a,z) = u™(a,z). 6)

Continuous zone ((L,+L,) < |z| <(L,+ L+ L,)): the radial and axial displacements
are continuous at the interface

w(az) = u™(a,z), w'(a,z) =w"(az) @)
In the present model, the continuous zone is not constrained to be a “stick” region, i.e.,
the radial stress may be tensile (so long as it does not exceed the interfacial normal strength

value). For frictionally constrained interfaces (i.e., interfaces with zero intrinsic normal
strength) the radial stress is constrained to be compressive

o/(az) <0 (8)
while the absolute value of the shear stress is such that it does not allow slip

lo/(a,2)| < plof(a,2)| ©)

Surface conditions
At points on the surface (r = d), we can impose two sets of elasticity boundary
conditions

o(dzy =00(dz) =0 (10)
or
u™(d,z) = u”(d,z)+u™(d,z)
on(dz)=0 (11)
as bounds since eqns (10) minimize and eqns (11) maximize the constraint within the class

of problems having zero shear stress on the boundary (the latter requirement is motivated
by the concentric cylinder simulation of the hexagonal array). In these equations u’(d, z)
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and u"(d, z) are the radial displacements in the uncracked composite due to a temperature
change, AT, and remote axial displacement wy, respectively. The stress and displacement
fields for a perfectly bonded composite cylinder subjected to a uniform remote axial strain
and thermal loading are given by Chawla (1987) and Hseuh and Becher (1988, 1989),
respectively, and are conveniently summarized in the appendix of Kaw et al. (1995). At
points on the surface, r = d, well removed from the crack plane, the two conditions (10)
and (11) are equivalent. In this work, we will use eqns (11) since these lead to zero slope of
the crack surface, éw™/dr, at (d,0) for the edge crack problem (¢ = d) and avoid the cusp
which would result from the application of eqns (10).

End condition
The elasticity boundary conditions to be prescribed at the crack plane z = 0, are given
by

al.r0)=0 r<a
on(r,0) =0 a<r<d
w/(r0)=0 r<a
w"(r,0) =0 a<r<b, c<r<d
o7 (r0)=0 b<r<c (12)
constrained by the opening of the transverse crack
w?(r0) =20, b<r<c (13)

VARIATIONAL MODEL

The solution for the stated problem is obtained by employing a modified version of
the variational model (Pagano, 1991) of an axisymmetric concentric cylinder which contains
damaged regions in the form of annular or penny-shaped cracks in the constituents and/or
debonds between them. The model is generated by subdividing the body into regions
consisting of a core and a number of shells of constant thickness and length and satisfying
the Reissner variational equation with an assumed stress field in each region. That is, we
set

57 =0 (14)
where
J=j qu—J U,ds s
v 5
and
1
F= ET"(Ui’j+ U,)~Wi(tyey (16)

In these equations, W is the complementary energy, t;;and U, are the stress and displacement
components, respectively, in Cartesian coordinates, e, are the mathematical free expan-
sional or non-mechanical strains, V is the volume enclosed by S, S is the part of S on
which one or more traction components are prescribed and T’ are the Cartesian components
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of the prescribed tractions. Further, a comma followed by a subscript(s) implies differ-
entiation with respect to the appropriate coordinate(s) and the summation convention is
understood. Throughout this work, we also define the tilde functions as follows:

f(x) iffis prescribed at x

fx) { 0 otherwise

Reissner (1950) has shown that the governing equations of elasticity can be obtained as a
consequence of the variational equation provided both stresses and displacements are
subject to variation in the application of (14). The stress field is assumed such that o, and
04 are linear in r within each region, while the forms of o,, and o, are chosen to satisfy the
axisymmetric equilibrium equations of linear elasticity. Letting

g, =0, 0y = Oy, 03 =04, 05 =0, (17)

(and the analogous relation for the engineering strain components ¢; (i = 1,2,3,5) and
hygrothermal free expansional strain components ¢; (i = 1, 2, 3)), we arrive at the relations
in the region r, < |r| < 1y

O-Izpl\/f.(li) (l=1,2,3,5.-]:l,2,5) (]8)
where f/ are known shape functions of r defined such that
Pu(2) =0ryz) (i=1,2,3,5;a=1,2) (19)

and the inner and outer radii of the region are denoted by r; and r,, respectively. In order
to maintain consistency with our postulated stress field, we further assume that eqns (18)
hold on the boundaries, as well as within the medium itself. The remaining dependent
variables follow directly from the mathematics without further assumptions. They are the
weighted displacements

2

(u* ,7) = J Tt ) dr (20)

n

and

(W 3p) = j ) dr @1

n

The interfacial displacements u,, w, (« = 1,2), or displacements on the radial boundaries
r = ry, 1y, only enter the formulation if they are prescribed or if we have relative slip at the
interface.

For simplicity, let us assume that the medium consists of a single section composed of
a cylindrical core (k = 0) surrounded by N concentric hollow cylinders and is defined by
end planes z = z|, z,. Now, according to (14),

N
8J=7Y 65, =0 (22)
k=0

for the entire medium. Substituting eqns (16)—(21) into (15) and performing the integration
with respect to r after taking the first variation and then into (22), we arrive at
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J (32 +r212)0p32 + (Xs2 +F2w2)0Psa + (P32 — P32 )2 Oty +(Psa — Psa)r20w,]° dz

+{[(H; — H3)5t+ (Hy — Hy)du+ (H; — H,)ow* + (Hy — Hg)ow]°} 222

N Z,y
+kzl f [(fs1 —ru)opss + (st —riwi)opsi + (32 +72U2)0p32 + (52 +72W2)0ps,

— (P31 = P31)r 10Uy — (psy — Psi )ri 0wy + (P32 — P32)120us + (Ps -—1552)1'2514)2]" dz

+{[(H, — H))éu+(H,— H,)d0+ (H, — H)du+ (H, — H;)ow*
+(Hy—Hy)ow)*} 22 =0 (23)

z=z

where the superscript & attached to a bracket or parenthesis signifies that all the enclosed
functions are to be evaluated at the given value of k and

Y = Nu—Eg—suxpix (,7=1,2,3,5;J, K=1,2,...5) (24)

with
E,»szze,.fﬁ")rdr (j=1,2,35JK=12...5) (25)

and
Syks = j SfOfPrdr (ij=1.2,3,5JK=1,2,...5 26)

where S, is the elastic compliance matrix and the components of #,, are defined in the
Appendix. Also, the following definitions have been employed in (23) for the case where
r#0

H, = ps;
H ZV%PSI—rfpsz_(V%'f'rlrz'f‘r%)]’ﬂ
’ rira(ry—ry) rfr%
Fipsa—rapsi  (ri+r)psy
4= — - 27
riry(ra—ry) rir;

while, if r; = 0, instead of (27), we have

H, =0, H, =l%—r2p53, H, = pss (28)
2
and
H, =r2P1|—rlP|2
r,—r,
H, = 12— P (29)
r,—r

hold for any value of r|. Further, since the variations of the weighted displacements,
ot . .. 0w, are all arbitrary in the region, z, < z < z,, the coefficients of these terms have
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been set equal to zero in (23). These lead to the so called equilibrium equations.t Similarly,
aside from 8p%,, dp%,, op%,, op%,, which may enter the boundary conditions and/or interface
conditions, the coefficients of the remaining Jp% have been set equal to zero in (23) since
the variations are arbitrary. These lead to the so called constitutive relations.{

Interface conditions

We will next examine the boundary condition equations derived from the variational
principle. At this point we should recall that p,; and ps; (i = 1,2) are simply equal to the
radial and shear stress, respectively, at r = r; as shown by eqn (18), while »; and w; are the
radial and axial displacement components, respectively, at » = r,. Thus these functions may
or may not be independent. In the discussion which follows let k& denote the interface
between the fiber and matrix.

Open zone. At a point on an interface r% = rA*! (0 < k < N—1), we may prescribe
traction components. Using (1) and (2), review of eqn (23) indicates that the following
options are appropriate
1;2 = ﬁéz =0 (30)

as well as

=p5t =0, pii'=p51" =0 3D

Slip zone. At a point on an interface r4 = r{*' (0 < kK < N—1) where traction con-
tinuity is prescribed (eqn 1), we must have

pho = piT! = p(say) (32)

1

P, = pit! = t(say) (33)

while the conditions of frictional slippage (eqn 4) and normal contact (eqn 6) require
us = uft! (34)
and

iy = Tk, (35)

where the sign to be used is determined by the consideration that the shear stress should
oppose the relative slip (Aw) at the interface. Substituting (32)—(35) and the first variation
of these equations into (23), we find that we must set

k+1

2 x5 a0 x5 +Hriwh =TT =0 (36)
and prescribe (w4 —w% ") in the slip region, in order for the variation to vanish. However,
it is not realistic to impose the relative slip (w4 —w%*') as a boundary condition. To avoid

this problem, we propose a modification to the formulation as follows. Use of (32) and
(34) in conjunction with (23) without invoking (35) gives

X tAsi =0 (37

We shall use eqns (32), (33), (35) and (37) in the slip region and employ eqn (36) to

t For details see Pagano (1991).
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calculate the jump in axial displacement at the slipping boundary as even in 3-D elasticity
theory, eqn (14) does not vanish when friction is included.

Continuous zone. At a point on an interface r5 = ri™' (0 < k < N—1) where continuity
is prescribed, we must have

=,k =k G8)
and
> =psi! (39

using (1) and (7). Substituting (38), (39) and the first variation of these equations into (23),
we get

K+t =0, x5+x5 =0 (40)

and the interfacial displacements u; and w; (i = 1,2) at this point are eliminated from the
equations. Consequently, the proper relations governing interfacial continuity at a point
are (39) and (40).

Surface conditions
We see that eqn (23) also contains two terms corresponding to the outer annulus
k = N. Using (11) and (23), we obtain

X3 = —r?

5 = —r¥i(d,z2) (41)
and

Pjsvz = ﬁ‘gyz =0 (42)
End conditions

Finally, using (12) and (23), the boundary conditions to be prescribed on the crack
plane z = 0 can be expressed as follows

H]=H~]=O
H,=H, = r<d (43)
H4=ﬁ4:
H,=H,=0
~ b<r<c (44)
Hx:ngo
wF=w=0 r<b c<r<d (45)

which completes the boundary value problem formulation with the present model. We
should mention that while the analysis was presented for a single section, it can be very
easily extended to include multiple sections. In that case, the summation in (22) is carried
over all sections under consideration.

General solution
Our system consists of 18 N+ 16 equations for a like number of unknowns which are
D11s Pi2s D21s P22s Pats P32s P33s Pass Dass Ps1s Psas Ps3s U, @, u, u*, w, w* within each annulus ; and
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Pi1> P12s P21s P22> P31> Pz P33s Paas Ps2» Pss» W, i1, u, u®, W, w* in the core, while 5 N+4 boundary
conditions are required at each end z = z,, z,. The field equations within each material,
generated by the variational equation, consist of a system of first order ordinary differential
equations and algebraic equations of the form

(L% +[Lo]X =7

where

[L,] contains the coefficients of the derivative terms,
[Lg] contains the coefficients of the algebriac terms,

¥ contains the terms dependent on the hygrothermal strains and applied dis-
placements, and
X contains the unknown stress and displacement functions

The general form of the solution for any of the dependent variables P(z) is therefore
expressed by

P(z) =} Aie** +P,(z) (46)

within each constituent where A; are constants, 4, are eigenvalues of a determinant, and
P,(z) is a particular solution, which in the present case is a simple polynomial. Further
details of the solution procedure including the method for determining the higher order
eigenvector and higher order particular solution are discussed by Brown (1992). The number
of regions, in particular in the » direction, can be increased in order to improve solution
accuracy. The regions are selected such that the thermoelastic properties are constant and
the boundary conditions do not change character on any of the bounding surfaces within
each region.

EXAMPLE PROBLEM

Our aim is to study the effect of material and geometrical parameters on the extent of
interfacial debonding under thermo-mechanical loading of a unidirectional ceramic matrix
composite. We will specifically examine the effect of the friction coefficient and temperature
change under remote uniform axial displacement on the internal stress distribution. We
will compare our results with the solution of Kaw ez al. (1995) for an identical geometry
and loading. Only cases with slip and no open zone were considered in their study, with the
edge crack touching the slipping interface, i.e., @ = b and ¢ = d (see Fig. 1) which results in
a fully cracked matrix. A sufficient condition to ensure no opening occurs is that the stress
normal to the interface is compressive over the entire interface ; for the cases studied this
has been verified a posteriori. The absence of any singularities for the stated problem for
relevant values of elastic moduli and friction coefficient for ceramic matrix composites is
discussed by Schwiertert and Steif (1991), although, as we have discussed earlier (Pagano,
1991), no singularities appear in the present model under our solution technique.

The material properties used in the calculations corresponding to a SiC (silicon carbide)
fiber and CAS (calcium aluminosilicate) glass matrix are as follows:

Material E(GPa) v o (umimf®
SiC 207.0 0.25 3.5
CAS 98.0 0.25 6.5

The fiber volume fraction was set to equal to 0.4 while AT was estimated to be —1000°C
to calculate the processing induced residual stresses. In all problems studied, the length of
the continuous zone normalized by the fiber radius was set equal to 120, while the normalized
slip length was a parameter (varied from 1 to 7). The resulting ratio of continuous to slip
region is assumed to simulate an infinite continuous region. In general, the z-dependence
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of the solution is expressed in closed form. Thus, no further discretization was needed in
the z-direction in the two regions considered, i.e., the continuous and slip zones (this would
only be necessary to avoid overflow/underflow problems). The results of the model, as
mentioned earlier, however demonstrate dependence on the thickness of the subregions
taken to represent the domain. In the present case, results were obtained with ten subregions,
one core and nine shells, with the interfaces chosen at r = 0.7 a, 0.85 4, 0.92 4, 0.97 q, q,
1.03 g, 1.12 a, 1.25 a and 1.4 a. Some of the details of subregion optimization have been
discussed earlier (Pagano, 1991 ; Pagano and Brown, 1993); however, this still remains
dependent on a trial and error approach. We have not conducted any further convergence
studies, but based on our past experience, we feel confident with the numerical scheme
employed in this work. The calculations were done on a HP 9000 computer employing
quad precision.

In general, slip length L, is dependent on several parameters such as the externally
applied remote displacement wy, friction coefficient g, and temperature change AT, besides
the thermoelastic properties of the constituents. Several researchers have used a criterion
which supplements the aforementioned boundary conditions to estimate the length of the
slip zone. These include, amongst the many employed, using (i) smoothness of shear stress
(Kaw et al, 1995), and (ii) continuity of interfacial stresses and displacement gradients
(Schwietert and Steif, 1991) at the stick-slip transition, or (iii) setting the total stress
intensity factor equal to zero (Wang et al., 1991 ; Doliar and Steif, 1989) at the matrix crack
tip (because of absence of singularity at that point for the problem under consideration).
For this study, we assume a constant value of the length of the slip zone and change the
input remote displacement iteratively (while keeping everything else constant) so that all
our boundary, inequality and sign conditions are satisfied. The resulting solution is seen to
satisfy the continuity of axial, shear and radial stresses corresponding to a smooth transition
from a slip to a stick zone in both fiber and matrix.

In subsequent plots, the results from the present analysis are indicated by lines (solid
and dotted) whereas symbols will represent the solution taken from the work of Kaw et al.
(1995).

In Fig. 2, we have plotted the normalized slip length L /a as a function of the negative
of the ratio of remote matrix axial stress to remote interfacial radial stress. This is because
any combination of temperature change, remote axial displacement and linear coefficients
of thermal expansion of the fiber and matrix which result in the same stress ratio will result

L/a

p =02 a
lp =03 o ..
p =04 o _

0 0.5 1 L5 2 2.5 3 35 4

- Rgmot_e matrix axial stress
Remote interfacial radial stress

Fig. 2. Variation of normalized slip length as a function of the negative of the stress ratio for
constant coefficient of friction.



4320 G. P. Tandon and N. J. Pagano
0 =
— SEaEs e
-0.024 Tz /,’
l [ XY ," i'
-0.04 4 At -+ Ak 8_ .
~
)
%" -0.06 Kawetal Present analysis
— O g G, T
e [ Lia=4 A A
-~ -0.08 L'/I =5 o * ..
© La=6 © e -
-0.1
O
° o
0121 g 2 4\ o o
14 & N j°} —
-0.14 —r : - ; —
1 2 3 4 5 6 7 8
z/a
Fig. 3. Interfacial radial and shear stresses as a function of normalized axial location for constant
slip lengths.

in the same slip length. Unlike the comparison with results of Gu and Mangonont (1992),
(see Fig. 4 in Kaw et al., 1995), we observe very good agreement between the present
analysis and the numerical solution of Kaw et al. (1995) for all choices of coefficient of
friction and all values of slip lengths. The slip length increasés monotonically with an
increase in stress ratio and decreases with an increase in coefficient of friction.

Next, we compare the stress distribution at the fiber-matrix interface as a function of
normalized axial location, z/a, from the matrix crack plane. For the remainder of this study,
we will set the friction coefficient to be 0.3. In Fig. 3, we have shown the distribution of the
radial and shear stress at the interface and compared our solution with the results of Kaw
et al. (1995). Unlike the numerical solution, where eqn (4) is satisfied only at a discrete
number of collocation points, the present analysis satisfies the Coulomb friction law at all
points within the slip region, including the point z/a = 0 which is on the crack plane. In the
numerical scheme employed by Kaw ez al. (1995), the first collocation point} is located
away from the crack plane. The calculated value of the radial stress is therefore close but
not equal to zero at the matrix crack tip (the shear stress is equal to zero at the matrix
crack plane) since the Coulomb friction law is not being satisfied there. As seen in Fig. 3,
the radial stress rapidly approaches the remote radial stress at the interface whereas, the
shear stress decays rapidly to zero at the end of the slip zone. Both the interfacial radial
stress and maximum shear stress are seen to be insensitive to increasing slip length. Within
the slip zone, the shear stress is seen to increase from zero at the free surface to a large
negative value (approx. 40 MPa) within a small region adjacent to the surface. For the
various slip lengths investigated this boundary layer effect is seen to occur within one-half
of fiber radius irrespective of the value of the slip length, as shown in Fig. 4. Having attained
the maximum, the shear stress then remains fairly constant within the slip region. Various
approximate models available in the literature, which assume a constant value of shear
stress in the slip region, therefore neglect the boundary layer effect observed in this study.
Also, one should note that a constant shear stress assumption gives logarithmically singular
fiber axial stresses at the crack tip (Wijeyewickrema and Keer, 1993), while the Coulomb
friction law gives large but finite fiber axial stresses at the crack tip (Schwietert and Steif,
1991). ;

Figure 5 shows the axial stresses within the fiber and matrix along the interface as a
function of normalized axial location for constant slip lengths. The axial stresses in the
fiber are tensile near the crack plane (z = 0) and then become compressive for higher z/a
values, approaching the value of the remote axial stresses. The matrix axial stresses start at

T An approximate shear-lag analysis using fictitious coefficient of friction.
1z = 0 cannot be chosen as a collocation point because the integrals in the numerical scheme diverge for such
cases.
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Fig. 5. Interfacial axial stresses as a function of normalized axial location for constant slip lengths

zero in the crack plane and approach the value of the remote axial stresses at the end of
the slip zone. To gain a better insight into the stress values close to the crack plane, we
have listed some axial stresses from our present analysis in Table 1 (for L,/a = 4). The
comparison between the results from the present analysis and the numerical solution (Kaw
et al., 1995) for ¢.. 1s found reasonable in the fiber for all values of z/a and in the matrix
away from the crack plane. At points very close the crack plane, the numerical solution of

Table 1. Variation of axial and hoop stresses at the interface with
normalized axial location for L,/a = 4

o’ (GPa) oo (GPa) iy (GPa)

zja o’ (GPa)

0 0.27478 0 0.00324 0.24900
0.01 0.25178 0.00205 —0.03020 0.24180
0.02 0.22264 0.00339 —0.04425 0.23664
0.1 0.11385 0.01651 —0.08725 0.22740
0.6 0.00446 0.03769 —0.12552 0.22632
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Fig. 6. Interfacial hoop stresses as a function of normalized axial location for constant slip lengths.

Kaw (1995) gives larget negative values of the matrix axial stress. Since in the problem
under consideration, no elastic singularities exist, this behavior is unexpected. In contrast,
the present solution gives stress values which gradually decay to zero as one approaches
the crack plane (z = 0) on the matrix side of the interface. Similar observations have been
made for other values of slip lengths.

In Fig. 6, we have shown the behavior of the hoop stresses along the interface as a
function of the normalized axial location, z/a, for constant slip lengths. The hoop stresses
in the fiber are found to be compressive and almost insensitive to the variation of slip
length. The hoop stresses in the matrix are tensile and increase away from the transverse
crack plane, approaching the value of the remote hoop stress. In Table 1, we have also
listed some hoop stresses from the present analysis (for L,/a = 4) to get a clearer picture
close to the crack plane. Like axial stress, the hoop stress in the two solutions in the fiber
side of the interface agrees reasonably for all z/a values and in the matrix away from the
crack plane. At points very close to the crack plane, the numerical solution of Kaw (1995)
is again seen to give unexpected largef negative values of the matrix hoop stress. The
present solution, on the other hand, gives stress values which gradually approach the hoop
stress value at the free surface, z = 0.

In Fig. 7, the axial stresses in the fiber and matrix are plotted as a function of the
normalized radial location for L/a = 4. As noted by Kaw et al. (1995), the axial stress in
the fiber and matrix region are not constant at z/a = 4, which is the slip-stick transition
length. Both fiber and matrix axial stresses are, however, seen to become nearly independent
of the radial coordinate away from the crack plane and the slip-stick transition zone (e.g.,
at z/a = 6). Therefore the assumption of radially independent axial stresses made by Gu
and Mangonon (1992) is seen to be valid away from the crack plane and the slip-stick
transition zone.

In Fig. 8, we have plotted the normalized crack opening displacement (COD) profiles
as a function of the normalized radial location in the matrix, r/a, for constant slip lengths.
These profiles are rather flat with the values changing very little across the matrix region.
Again, away from the fiber-matrix interface, the comparison between the two solutions is
seen to be reasonable. However, at points approaching the fiber-matrix interface, there is
a difficulty in computing the COD values from the numerical solution (Kaw, 1995). Finally,
in Fig. 9, we have plotted the relative slip (Aw = w” —w’) normalized by the fiber radius, at
the fiber matrix interface, as a function of normalized axial location for several values of
slip lengths. For points away from the matrix crack plane, we once again observe very
good agreement between the two solutions while values at the crack plane (z/a = 0) are

TThe large stress values arise from the inability to use IMSL (1987) routines for the collocation points close
to z = 0 in the solution of integral equations. This is because of two reasons: slow convergence of the integrals
and possibility of large round-off errors.
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unavailable due to numerical difficulties (Kaw, 1995). Using a constant shear stress model,
Wijeyewickrema and Keer (1993) noted that the maximum slip occurs away from the
crack plane and that the peak decreased with increasing slip length. Unlike their stated
observation, the maximum slip is seen to occur at the crack plane for all values of slip
lengths investigated in this work and is seen to increase with increasing values of L /a. The
increase in slip (Aw) is consistent with increase in the applied value of remote displacement
needed to give rise to larger slip lengths.

CONCLUDING REMARKS

The objective of this work was to examine the stresses and displacements in the vicinity
of a bridged matrix crack touching a frictionally constrained interface and to establish the
accuracy of the variational model employed by comparing it to existing elasticity solutions.
The stress field for the stated problem is found to be bounded for the class of materials
considered in this study. Unlike other solutions reported in the literature which satisfy
boundary conditions in a limited sense, the present approach is seen to satisfy all boundary
and inequality conditions in the slip and stick regions and at the slip-stick transition point.
The results of the present analysis are shown to be in very good agreement with the
numerical elasticity solution of Kaw er al. (1995) for points away from the matrix crack tip
(located at the fiber-matrix interface). At or very near the crack plane (z = 0), the numerical
solution of Kaw (1995) is seen to give rather unexpected results in the behavior of matrix
axial and hoop stresses, while there are numerical difficulties in evaluating crack opening
displacement and axial slip at the crack tip.

In this study, we have also demonstrated the existence of a boundary layer effect for
the behavior of the radial and shear stresses in the slip region. Various approximate models
available in the literature, which assume a constant value of shear stress in the slip region,
therefore neglect the boundary layer effect observed in this study. The radial stress is found
to be compressive over the entire length of the continuous zone, even though this was not
enforced as an additional requirement, for the problems analyzed in this work. The axial
stresses in the fiber and matrix region are shown to become nearly independent of the radial
coordinate away from the crack plane and the slip-stick transition zone. Further, the
Coulomb friction law employed in this study gives large but finite fiber axial stresses at the
crack tip, whereas, a constant shear stress assumption gives logarithmically singular fiber
axial stresses at the crack tip. Unlike the observation of Wijeyewickrema and Keer (1993),
maximum slip (Aw) is seen to occur at the crack plane for all values of slip lengths
investigated and is seen to increase with increasing values of L/a. The slip length itself is
seen to increase monotonically with an increase in stress ratio (negative of remote matrix
axial stress to remote interfacial radial stress) and decreases with an increase in coefficient
of friction. As shown by Kaw et al. (1995), the results of elasticity analysis converge to
approximate shear-lag analysis results only for large values of slip lengths.

Finally, in the example treated, we have solved the inverse problem, i.e., for a given
value of the slip length (and assuming no opening), we have calculated the applied value
of the remote displacement needed to give rise to the assumed value of slip length. We have
assumed that there is continuity of radial stress and displacement along the entire interface.
In practice, this may not be the case. The direct problem to consider is that of a matrix
crack impinging on an interface while the composite is loaded incrementally up to a specified
level. Is it now possible to postulate a logical sequence of failure events corresponding to
the applied load level? As shown by McCartney (1989) and Pagano and Brown (1993), the
radial interface stress reverses to tension (assuming perfect bonding and =, > %) in the
presence of an annular matrix crack, setting up the possibility of debonding under small
tensile loads applied to the composite. We could then have an open zone along the fiber-
matrix interface ahead of the matrix crack tip. This problem which would then involve
calculating the lengths of both the open and slip zones is certainly much more complex.
The equations governing the solution of this problem have already been presented in this
study. Our current effort is directed towards devising a methodology to obtain the solution



Matrix crack impinging on a frictional interface 4325

to the posed problem, which has not been addressed (perhaps even not discussed) in the
literature.
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